If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4d^2+9d-10=0
a = 4; b = 9; c = -10;
Δ = b2-4ac
Δ = 92-4·4·(-10)
Δ = 241
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{241}}{2*4}=\frac{-9-\sqrt{241}}{8} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{241}}{2*4}=\frac{-9+\sqrt{241}}{8} $
| 5*t=-3.2 | | 2-2x-(x-1)=-2(x+1) | | 124/(24-x)=31 | | 1-(x-1)-x=1/2x-1 | | X/3-x/6=2+5x/18 | | 0.08(y-4)+0.14y=0.02y-0.1 | | +x=4 | | -3(u-3)=-8u-16 | | 112x-42=-x-3 | | -x=-12.75 | | g-9=19= | | 5x+8=2x+7 | | x=-10x=-22 | | 7x-5=9x=x+10x | | 1/2=q+2/3= | | -4u-32=7(u-3) | | 3x-(x-5)=-5+6x+2 | | 3x+(x/3)=40 | | -1=20x+63 | | 6a=4(a-3)+3 | | 4(w+7)-2w=14 | | 5(2x+3-7x=21 | | −1+9x=3(10x+21)−x | | 3(x-3)+2=2x+14 | | 124/(24+x)=31 | | 3x+4x-10=5-3x | | 3x+60=13 | | 6k-20=k/2 | | 3(7z-23)=93 | | (9+q)(8-q)=(9+q)(8−q) | | 3+3x+7=2x+2-x | | 1+17x=120 |